More Adaptive Algorithms for Adversarial Bandits
نویسندگان
چکیده
We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm achieves various new data-dependent regret bounds improving previous work. Examples include: 1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of the first-order path-lengths of all arms as well as an important negative term, which together lead to faster convergence rates for some normal form games with partial feedback; 4) a regret bound that simultaneously implies small regret when the best arm has small loss and logarithmic regret when there exists an arm whose expected loss is always smaller than those of other arms by a fixed gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is completely parameter-free. The main idea of our algorithm is to apply the optimism and adaptivity techniques to the wellknown Online Mirror Descent framework with a special log-barrier regularizer. The challenges are to come up with appropriate optimistic predictions and correction terms in this framework. Some of our results also crucially rely on using a sophisticated increasing learning rate schedule.
منابع مشابه
An algorithm with nearly optimal pseudo-regret for both stochastic and adversarial bandits
We present an algorithm that achieves almost optimal pseudo-regret bounds against adversarial and stochastic bandits. Against adversarial bandits the pseudo-regret is O ( K √ n log n ) and against stochastic bandits the pseudo-regret is O ( ∑ i(log n)/∆i). We also show that no algorithm with O (log n) pseudo-regret against stochastic bandits can achieve Õ ( √ n) expected regret against adaptive...
متن کاملReactive bandits with attitude
We consider a general class of K-armed bandits that adapt to the actions of the player. A single continuous parameter characterizes the “attitude” of the bandit, ranging from stochastic to cooperative or to fully adversarial in nature. The player seeks to maximize the expected return from the adaptive bandit, and the associated optimization problem is related to the free energy of a statistical...
متن کاملThe Best of Both Worlds: Stochastic and Adversarial Bandits
We present a new bandit algorithm, SAO (Stochastic and Adversarial Optimal) whose regret is (essentially) optimal both for adversarial rewards and for stochastic rewards. Specifically, SAO combines the O( √ n) worst-case regret of Exp3 (Auer et al., 2002b) and the (poly)logarithmic regret of UCB1 (Auer et al., 2002a) for stochastic rewards. Adversarial rewards and stochastic rewards are the two...
متن کاملStochastic bandits robust to adversarial corruptions
We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click fraud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial a...
متن کاملAn Improved Parametrization and Analysis of the EXP3++ Algorithm for Stochastic and Adversarial Bandits
We present a new strategy for gap estimation in randomized algorithms for multiarmed bandits and combine it with the EXP3++ algorithm of Seldin and Slivkins (2014). In the stochastic regime the strategy reduces dependence of regret on a time horizon from (ln t) to (ln t) and eliminates an additive factor of order ∆e 2 , where ∆ is the minimal gap of a problem instance. In the adversarial regime...
متن کاملStochastic and Adversarial Combinatorial Bandits
This paper investigates stochastic and adversarial combinatorial multi-armed bandit problems. In the stochastic setting, we first derive problemspecific regret lower bounds, and analyze how these bounds scale with the dimension of the decision space. We then propose COMBUCB, algorithms that efficiently exploit the combinatorial structure of the problem, and derive finitetime upper bound on thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.03265 شماره
صفحات -
تاریخ انتشار 2018